A Neurotoxic Phospholipase A2 Impairs Yeast Amphiphysin Activity and Reduces Endocytosis
نویسندگان
چکیده
BACKGROUND Presynaptically neurotoxic phospholipases A(2) inhibit synaptic vesicle recycling through endocytosis. PRINCIPAL FINDINGS Here we provide insight into the action of a presynaptically neurotoxic phospholipase A(2) ammodytoxin A (AtxA) on clathrin-dependent endocytosis in budding yeast. AtxA caused changes in the dynamics of vesicle formation and scission from the plasma membrane in a phospholipase activity dependent manner. Our data, based on synthetic dosage lethality screen and the analysis of the dynamics of sites of endocytosis, indicate that AtxA impairs the activity of amphiphysin. CONCLUSIONS We identified amphiphysin and endocytosis as the target of AtxA intracellular activity. We propose that AtxA reduces endocytosis following a mechanism of action which includes both a specific protein-protein interaction and enzymatic activity, and which is applicable to yeast and mammalian cells. Knowing how neurotoxic phospholipases A(2) work can open new ways to regulate endocytosis.
منابع مشابه
Neurotoxic phospholipase A2 toxicity model
The molecular mechanism of action of presynaptically neurotoxic secreted phospholipases A2 (sPLA2s) has not been fully elucidated. We have recently proposed a model to explain one of the hallmarks of their action - the reduction in endocytosis leading to synaptic vesicle depletion in nerve terminals. Our results speak strongly in favor of a mechanism in which both specific protein-protein inter...
متن کاملInhibition of receptor-mediated endocytosis by the amphiphysin SH3 domain
BACKGROUND Receptor-mediated endocytosis appears to require the GTP-binding protein dynamin, but the process by which dynamin is recruited to clathrin-coated pits remains unclear. Dynamin contains several proline-rich clusters that bind to Src homology 3 (SH3) domains, which are short modules found in many signalling proteins and which mediate protein-protein interactions. Amphiphysin, a protei...
متن کاملAmphiphysin II (SH3P9; BIN1), a Member of the Amphiphysin/Rvs Family, Is Concentrated in the Cortical Cytomatrix of Axon Initial Segments and Nodes of Ranvier in Brain and around T Tubules in Skeletal Muscle
Amphiphysin (amphiphysin I), a dominant autoantigen in paraneoplastic Stiff-man syndrome, is a neuronal protein highly concentrated in nerve terminals, where it has a putative role in endocytosis. The yeast homologue of amphiphysin, Rvs167, has pleiotropic functions, including a role in endocytosis and in actin dynamics, suggesting that amphiphysin may also be implicated in the function of the ...
متن کاملCalmodulin Promotes N-BAR Domain-Mediated Membrane Constriction and Endocytosis.
Membrane remodeling by BAR (Bin, Amphiphysin, RVS) domain-containing proteins, such as endophilins and amphiphysins, is integral to the process of endocytosis. However, little is known about the regulation of endocytic BAR domain activity. We have identified an interaction between the yeast Rvs167 N-BAR domain and calmodulin. Calmodulin-binding mutants of Rvs167 exhibited defects in endocytic v...
متن کاملAmphiphysin I antisense oligonucleotides inhibit neurite outgrowth in cultured hippocampal neurons.
Amphiphysin I is an SH3 domain-containing neuronal protein, enriched in axon terminals, which was reported to act as a physiological binding partner for dynamin I in synaptic vesicle endocytosis. Rvs167 and Rvs161, the yeast homologs of amphiphysin I, have been implicated in endocytosis, actin function, and cell polarity. Now we have explored the possibility that amphiphysin I also may have a r...
متن کامل